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Abstract

A six-variable geometrical nonlinear shear deformation laminated theory is presented in which normal stress and

strain distribution can be calculated. By considering some a�ective factors that were neglected under the ®nite

deformation condition, an improved Von Karman geometrical nonlinear deformation-strain relation is used for

large deformation analysis. By analyzing the bending problem of laminated plates, and by comparing it with 3-D

elasticity solutions and J.N. Reddy ®ve-variable simple higher-order shear deformation laminated theory, we can

come to a conclusion that a satisfying precision of the calculation studied in this paper has been achieved, which

shows that it is especially suitable for application of the calculation in the condition of a large deformation and the

laminated thick plate analysis. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

With the increasing use of composite materials in thick laminated form and large deformation

analysis, the need for advanced methods of analysis is obvious. For such laminated systems, the

components of stress and strain transverse in the plane of laminate strongly in¯uence the behavior.

Many di�erent higher-order laminated plate theories have been proposed which are intended to improve

upon the classical laminated plated theory by accounting for the e�ects of transverse components of

strain in the plates (Lo, 1977; Reddy, 1984; Chia, 1988; Noor, 1989; Shu, 1994). A higher-order

laminated theory for ¯exural behavior of laminated plates was proposed by Lo (1977), where eleven

equilibrium equations were obtained for the determination of the eleven generalized displacement

coe�cients in the assumed displacement ®elds. A simple higher-order shear deformation theory of

laminated plates was developed by Reddy (1984), which contained the same dependent unknowns as in

the ®rst-order shear deformation theory of Whitney and Pagano, but account for the parabolic
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distribution of the transverse shear strains through the thickness of the plate. Meanwhile Reddy

assumed that w is not a function of the thickness coordinate. However the use of three-dimensional

models for predicting the response characteristics of laminated anisotropic plates with complicated

geometry is computationally expensive and, therefore, is not feasible for practical composite plates. On

the other hand the two-dimensional theories are adequate for predicting the gross response

characteristics of medium-thick laminated plates, but they are not adequate for the accurate prediction

of normal stresses and deformations.

By considering some a�ective factors that were neglected under the ®nite deformation condition, an

improved Von Karman deformation-strain relation is used for large deformation analysis. The

discussions of this paper focus on developing a three-dimensional geometrical nonlinear laminated theory

in which normal stress and strain distribution can be calculated. A relatively simple model for laminated

plates is provided to proceed geometrical nonlinear analysis and avoid the complicated compute.

2. Displacement ®eld assumption

We begin with the displacement ®eld

u�x, y, z,� � u0�x, y� � zcx�x, y� � z2zx�x, y� � z3fx�x, y�

v�x, y, z� � v0�x, y� � zcy�x, y� � z2zy�x, y� � z3fy�x, y�

w�x, y, z� � w0
�x, y� � z2zz�x, y� �1�

Where u0, v0, and w0 denote the displacements of a point (x, y ) on the midplane, and cx and cy are

the rotations of normal to midplane about y and x axes, respectively. The functions zx, zy, fx, fy, and zz
will be determined by using the condition that transverse shear stress, and sxz � s5, and syz � s4 vanish

on the plate top and bottom surfaces.
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For orthotropic plates and plates laminated of orthotropic layers, these conditions are equivalent to the

requirement that corresponding strains be zero on the surface, we have
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We obtain

zx � 0 fx � ÿ
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The displacement ®eld in eqn (1) becomes

u�x, y, z� � u0�x, y� � z
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We use the same thought chosen by Reddy (1984) and Shu (1994) to simplify the complex

displacement ®elds given by Lo (1977). Moreover we add the three-dimensional term to displacement

®eld eqn (5) by supplementing zz.

3. Geometrical nonlinear relations

The nonlinear theory of laminated anisotropic plates always based on the von Karman plate theory.

The theory is known to be able to predict the global behavior accurately. However, it is not accurate

enough to predict large deformation behavior of large de¯ections and large strains. For the purpose of

three-dimensional and large deformation analyses here, give some modi®cations to the von Karman

geometrical nonlinear plate theory.

Based on the de®nition of Green strain in large deformation:
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We get the strain-displacement relations,
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Also consider that normal strain is linear distribution along the thickness.
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The following terms in eqn (10) are neglected when accounting for shear strain-displacement relations.
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So we have the transverse shear strain-displacement relations
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Expressing the strain-displacement relation with midplane displacements, we have,
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Eqn (13) expresses the strains associated with the displacements in eqn (5). is di�erent from the von

Karman geometrical nonlinear plate theory. Some modi®cations are made here.

1. The square of midplane displacements cannot be neglected, i.e. 1/2 �@u0=@x�2 and 1/2 �@v0=@y�2 are

retained.

2. Rotations @u=@y and @v=@x are also considered.

3. Normal strain-displacement relation is considered to be linear.

4. Constitutive equations

Upon transformation, the lamina constitutive equations can be expressed in terms of stresses and

strains in the plate (laminated) coordinates as2
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Where Qij are the transformed material constants.

5. Six-variable equilibrium equations

The principle of virtual displacements was used to derive the equilibrium equations appropriate for

the displacement ®eld in eqn (5) and constitutive equation in eqn (14). The principle of virtual

displacements can be stated in analytical form as (Reddy, 1984).

dA �

�h=2
ÿh=2

�
R

�s1de1 � s2de2 � s3de3 � s4de4 � s5de5 � s6de6� dA dz

�

�
R

�
N1

@du0

@x
�M1

@dcx

@x
� P1

�
ÿ

4

3h2

�
@2dw0

@x2
�

@dcx

@x

�
ÿ
1

3

@2dzz

@x2

�

�N1

@u6

@x

@du6

@x
�N1

@w0

@x

@dw0

@x

�N2

@dv0

@y
�M2

@dcy

@y
� P2

"
ÿ

4

3h2

 
@2dw0

@y2
�

@dcy

@y

!
ÿ
1

3

@2dzz

@y2

#

�N2

@v0

@y

@dv0

@y
�N2

@w0

@y

@dw0

@y
�N6

 
@du0

@y
�

@dv0

@x

!
�M6

�
@dcx

@y
�

@dcy

@x

�

H.-F. Tan et al. / International Journal of Solids and Structures 37 (2000) 2577±2589 2581



�N6

@dw0

@x

@w0

@y
�N6

@w0

@x

@dw0

@y

�P6

"
ÿ

4

3h2

 
2
@2dw0

@x@y
�

@dcx

@y
�

@dcy

@x

!
ÿ
2

3

@2dzz

@x@y

#

�Q2

 
@cy �

@dw0

@y

!
� R2

"
ÿ

4

h2

 
@dw0

@y
� dcy

!#

�Q1

�
dcx �

@dw0

@x

�
� R1

�
ÿ

4

h2

�
@dw0

@x
� dcx

��
� 2M3dzz

�
dx dy �15�

We use the strains from eqn (13) and the following de®nitions of stress resultants.
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Specify, at x = 0, of a rectangular laminated plate the given force is ^N1, ^N6, ^Q1,
^M1, ^M6, ^R1, ^S1, ^T1

and the boundary conditions are of the form:
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It should be noted that Reddy (1984) did not account for the underline terms in eqns (17).

6. Bending analysis

6.1. Result of the linear analysis

In order to validate the present theory, the linear analysis of a symmetric three-layer square laminate

(Pagano, 1970; Shu and Sun, 1994) is performed. First these materials of the laminae are assumed to

have the following values for the engineering constants:

E3 � E2, E1 � 25E2, G12 � G13 � 0:5E2, G23 � 0:2E2,
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v23 � v31 � v12 � 0:25, E2 � 6:89� 106KN=m3
ÿ
106psi

�
Table 1 contains non-dimensionalized de¯ection and stress for the problems. By comparing these

results, it is obvious that the present theory gives the same accuracy results as the Reddy (1984), and the

results are in good agreement with the analytical solution of three-dimensional elastic results of Pagano

(1970, 1972).

6.2. Cord-rubber laminate nonlinear bending analysis

Here we consider the simply supported rectangular cord-rubber laminated plates. The geometry of the

plate with thickness h, length a and width b, and the displacement boundary conditions are shown in

Fig. 1. Eqn (19) gives the elastic constants of the cord-rubber lamina.

E1 � 0:617GPa, E2 � E3 � 0:008GPa, v12 � 0:475

G13 � G12 � 0:0262GPa, G23 � 0:00233GPa �19�

Fig. 1. Displacement boundary conditions of simply supported rectangular laminated plate.

Table 1

The de¯ection and stresses of the square cross-ply (08/908/08) plate under sinusoidal loading

a/h �w �s x �t xy �t xz

4 Pagano 1.954 0.720 0.0467 0.291

Present 1.896 0.667 0.0451 0.211

Reddy 1.894 0.665 0.0440 0.206

FSDT 1.710 0.406 0.0308 0.140

10 Pagano 0.743 0.559 0.0275 0.301

Present 0.716 0.547 0.0267 0.270

Reddy 0.715 0.546 0.0268 0.264

FSDT 0.663 0.499 0.0241 0.167

20 Pagano 0.517 0.543 0.0230 0.328

Present 0.506 0.539 0.0229 0.285

Reddy 0.506 0.539 0.0228 0.283

FSDT 0.491 0.527 0.0221 0.175
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Sun, 1994).
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Following the Navier solution procedure, we assume the following solution form that satis®es the

boundary conditions,

U0 �
X1
m,n�1

Umncos�ax� sin�by� Cx �
X1
m,n�1

Xmn cos�ax� sin�by�

V0 �
X1
m,n�1

Vmn sin�ax� cos�by� Cy �
X1
m,n�1

Ymn sin�ax� cos�by�

W0 �
X1
m,n�1

Wmn sin�ax� sin�by� Zz �
X1
m,n�1

Zmnsin�ax� sin�by� �20�

Where a � mp=a, b � np=b, also we assume that the applied transverse load q can be expanded in the

double-Fourier series as

q �
X1
m,n�1

qmn sin�ax� sin�by� �21�

Fig. 2. De¯ection and load curves.

Fig. 3. Thickness variation with de¯ection.
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Substituting eqns (20) and (21) into displacement ®elds (5), then substituting them into

geometrical nonlinear strain-displacement relation eqn (13), constitutive eqn (14), and using governing

eqns (16) and (17), we can obtain the di�erential equations which include the coe�cients

Umn, Vmn,Wmn, Xmn, Ymn, Zmn. Here are presented numerical results for cord-rubber laminated plate.

As shown in Fig. 2 the de¯ection of laminated plate and loading relations are obtained by using the

present theory. As shown in Fig. 3 the central thickness of the laminated plates change with de¯ection.

The compared results using the present theory and using Reddy simple higher-order shear deformations

theory for the case a/h = 5 and a/h = 10 were given in Figs. 4 and 5. Figs. 6 and 7 show the stress

distributions at di�erent planes of laminated plates.

1. Consider relatively thin laminated plates (where a/h>10), the agreement with Reddy's solution is

exceptionally good in the region of low de¯ections (the ratio of the central de¯ection to the thickness

is not greater than 20%).

With the incease of the ratio value, the di�erence between the results derived from the presented

theory and the Reddy's theory becomes obvious. In particular, when the ratio is greater than 100%,

the e�ect of the normal stress which lead to large deformation of the thickness cannot be neglected. It

has been proven that the six-variable geometrical nonlinear laminated theory is more accurate than

Reddy's theory to use for dealing with large deformation problems.

Fig. 4. A contrast to Reddy theory with de¯ection and loading curves.

Fig. 5. A contrast to Reddy theory with de¯ection and loading curves.
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2. Consider relatively thick laminated plates (where a/h< 5), the percentage of the deformation of

thickness of the center is about 2% even in the range of low de¯ection (w/h< 20%). Furthermore,

when the ratio of de¯ection to thickness increases to 80% the deformation of thickness increases to

more than 10%. The solutions in Figs. 3±5 reveal that the present six-variable geometrical nonlinear

laminated theory, which includes three-dimensional information and modi®ed Von Karman

geometrical nonlinear relations, is more ®t for thick laminated plates analysis and large deformation

analysis.

3. The transverse shear strains are parabolic distributions through thickness of the plate and the

transverse stresses are continuous across each layer interface.

4. Results shown in Fig. 3 indicate that the thickness of the plate varies nonlinearly with the de¯ection.

Fig. 6. Stress distributions on the xz-plane of 908/08/908 laminates (where y = b/2, q0 = 121 MPa, a/h = 5).
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7. Conclusion

A six-variable geometrical nonlinear shear deformation laminated theory is presented in which normal

stress and strain distribution can be calculated. By considering some a�ective factors that were neglected

under the ®nite deformation condition, an improved Von Karman deformation-strain relation is used

for large deformation analysis.

By comparing the results obtained with Reddy's simple higher-order shear deformation theory, it is

obvious that the six-variable higher-order geometrical nonlinear shear deformation laminated theory

gives a closer approximation to the behavior of laminated plates. This is especially true in the case of

relative thick laminates where the e�ects of the normal components of stress and strain could not be

neglected, and large deformation analysis.

Fig. 7. Stress distributions on the middle plane of 908/08/908 laminates (where q0 = 121 MPa, a/h = 5).
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